
ICANS XIV 
14’ Meeting of the International Collaboration on Advanced Neutron Sources 

June 14-19,1998 
Starved Rock Lodge, Utica, IL 

Remote Data Collection and Analysis 
Tom Worlton 

Argonne National Laboratory 

1. Introduction 

Neutron sources are getting more intense and the quantities of data produced for a given 
experiment are increasing. Some experiments can be done in a few minutes. The number of 
experiments which can be performed and the number of papers which can be written is limited 
by speed of analysis. Instrument Scientists at the major facilities spend much of their time 
helping users, not only with data collection, but also with data analysis. Ideally, the outside users 
should be able to take a larger share of the responsibility for data collection and analysis. This 
would allow the Instrument Scientists to work with more users and more papers could be 
produced. 

One of the factors limiting data collection and analysis by outside users is the difficulty in using 
the software that has been developed. The software generally is written in such a way that the 
user must type a lot of input. The software needs to become easier and more intuitive to use. 
The other factor limiting data collection and analysis by outside users is the need to travel to the 
facility to perform the experiment and analyze the data. Allowing this to be done remotely could 
greatly expand the number of users of the neutron facilities. 

2. Remote Data Collection and Analysis Project 

In order to enable scientists to more easily collect and analyze data and to allow them to do 
experiments remotely, we have begun a project to provide remote user-friendly data access, 
viewing, and manipulation. We also plan to provide an interface between this data viewing and 
manipulation software and specialized analysis programs. This project is possible because of 
recent developments in computer technology such as html and Java. 

Steps in data collection and analysis are shown in Table 1. Most steps can be performed locally, 
but the steps in the shaded areas will still need to be performed locally. 

195 



Table 1 Remote data collection and analysis. Most steps of the data analysis procedures 
can be done remotely, ut the shaded steps must still be performed locally. 

Data Collection Data Analysis 

~~b~~use<control Read data 
.,, ,, ,,‘” J’ II ‘, ! .: i.’ ., _‘Z \, I 

Set up data collection View spectra 

Start collection Operate on Spectra 

Control Sample Analyze data or 
Environment prepare analysis 

input files 
Stop Collection Collaborate with 

Instrument Scientist 

For remote data collection and analysis, samples will still need to be loaded locally, but a sample 
changer could allow batch loading of samples. Because more than one user might be using the 
instrument, it will be necessary for the facility to enable data collection for a specific user. 
Otherwise, it would be possible for one user to interfere with another or for an arbitrary person to 
interfere with data collection and instrument operation. Although environmental parameters 
could be controlled remotely, there would need to be hardware or software limits imposed by the 
facility. 

Archiving of data should be handled by the facility and could be done automatically, by 
connecting the data transfer to the data collection process. Because CDROM drives are now 
found on nearly all computers, CD Recordable (CDR) is a very desirable storage and distribution 
medium. CDR disks will last much longer than tape and it will probably be many years before 
CDROM drives disappear. By that time, DVD drives will have replaced CDROM drives and 
they will also be able to read CDR disks. The other advantage of using CDR is that remote users 
cannot accidentally (or intentionally) overwrite the data once it has been archived. Data can be 
archived and accessed without operator intervention, if a CD jukebox is used. 

We have chosen to write most software in the Java programming language because Java is 
designed as a network-based, operating system-independent language (see 
http://www.javasoft.com/). Java is also secure, object-oriented, and easier to write than C++ 
code. Java is also more suitable for use by non-professional programmers because it manages 
memory and does not have pointers. This prevents the programmer from creating memory leaks 
or accessing memory used by other programs. If the software is intended to run only on the 
server, it can be written in a native language such as C, C++, or Fortran. 

196 



Java programs can be compiled either as “applications” or as “applets”. An applet runs inside a 
web browser, while an application can be run independent of a web browser. Java achieves 
machine and operating system independence by defining a “byte code” which can be run by a 
Java virtual machine installed on the local computer. In the case of applets, the virtual machine 
is provided by the browser. The use of an interpreted byte code means Java programs run slower 
than native language programs such as C and C++ that are compiled for the target machine. 
However, Java Just In Time compilers can be used to compile byte code into machine code and 
speed up execution. 

One of the attractive features of Java is the ease with which one can write Graphical User 
Interfaces which can run on different platforms with a native look and feel. The Java GUI 
routines are in the Active Windowing Toolkit which appeared in Java version 1.1. Another class 
called SWING, provides even more powerful GUI functions. Swing will become standard in 
Java version 1.2. Sample menus showing Java menus and the File dialog box provided by Java 
are shown in Figs. 1 and 2. 

Figure 1 A sample Java menu bar and pull-down File menu. 

A sample Java file dialog box is shown in Fig. 2. The built-in classes in the Java AWT and 
Swing provide a simple method for interactively selecting and reading files. 

197 



GPPD9959Dl GSAS 
GF’F’D9959D2.GSAS 
GPPD9959d49GSAS 

Figure 2 A sample Java File dialog box for selecting and reading files. 

Menu bars and pull-down menus are quite familiar to most computer users now because of the 
ubiquity of Microsoft Windows and the Macintosh as personal computers. One of the goals of 
new software design is to make the use intuitively obvious so that new or inexperienced users 
can find their way through the operations provided by the program without assistance from other 
users and without the use of a user manual. This can be accomplished through the use of a 
familiar menu structure such as shown in Figs. 1-3. 

Figure 3 Sample Java menus for selecting viewing options. 

198 



Although we are writing our code in Java, we may still execute some functions through the web 
browser and CGI for simplicity. The web browser can execute CGI scripts written in Perl, TCL, 
JavaScript, Visual Basic, or some other scripting language native to the machine being used as a 
web server (See http:Nwww.w3.org/MarkUn/, httn://hoohoo.ncsa.uiuc.edu/cg;i/, 
httn:Nwww.perl.org;l,. http://www.scriptics.com/scripting/) 

3. Project Status 

Initially we planned to put the data in a database so we could use standard Java DataBase 
Connectivity (JDBC) tools to access the data. We tested this with the free Postgress database 
and found it too slow and inefficient. We then switched to Microsoft SQL server and found 
quite good response and efficiency. This is an acceptable method for instruments with moderate 
amounts of information, but for instruments with very large data sets, we decided that it is better 
to read the spectra from the raw data files. The raw data files will be read from the disk drives 
on the data collection computers or from the CDR data archive. Storing the header information 
in the database is still preferred for convenience in searching for desired data sets. 

The Java routines for searching the database and reading the data from the database are working. 
Programs to load the data into the database are also working. We used C for writing data & the 
database since the database is local, and populating the database does not require software to run 
on a client machine. Java was used for the routines to read from the database since they will 
typically be run remotely on the client machines. 

For highest storage efficiency and speed of access, we have written routines to read the data 
directly from the raw IPNS Run Files. Since access routines for these files were already 
available in C, the routines were written in C with a Java interface to the native methods. We 
may later rewrite these routines in pure Java to allow users to download the raw data and access 
it using our read routines. We will also write data retrieval routines for other types of data such 
as NeXUS [P. Klosowski, et al. 19971. 

We have designed Data objects to contain a single spectrum and DataSet objects to hold multiple 
Data objects with common independent variables. The Data object includes an XScale, an array 
of y-values, and an array of errors. It can also contain Attributes such as temperature or pressure. 
Attributes are optional and can be any string or float parameter. The Attribute class has a 
comparison method that allows a program to sort without needing to read and compare the 
attributes. Methods available for Data objects include add, subtract, multiply, divide, rebin, set 
attribute, and get attribute. The error array in the Data objects contains the statistical uncertainty 
for each data value. Raw neutron scattering data has a statistical uncertainty equal to the square 
root of the total number of counts, so a method has been included to set the errors to those 
values. As the data is manipulated, the data errors will be combined to properly propagate 
errors. 

Each IPNS run would map to a DataSet with the spectrum from each detector element mapping 
to a Data object within the DataSet. DataSet objects include methods to add and remove Data 
objects, to set and get labels, IDS, titles, and axis units, and to get data ranges. The DataSet 
object includes a log of operations that have been performed on the Data in the DataSet. We will 

199 



also have a DataSetContainer that allows handling multiple runs such as a series of 
measurements at different temperatures. 

Programs have been written to display an x-y plot of a selected Data from a DataSet, and to 
display an image composed of all the data from a DataSet. The intensities of points in the image 
are represented by the pixel color and each row of the image represents a Data. The image 
display we have produced is similar to that generated in the TOF_VIS program [Mikkelson and 
Worlton, 19971. 

Currently the rows of the image are sorted by detector element number and the data all comes 
from one DataSet. We are working on generalizing the selection and sorting of the different 
Data objects that make up the image so they can be selected from different DataSets in a 
DataSetContainer. This will allow us to display an image composed of spectra sorted by 
temperature or other variable. 

We initially were uncertain whether Java would work well with cursor interaction, but have been 
pleasantly surprised. We are able to generate x-y plots and display selected values in real time as 
the cursor is moved over the image. 

4. Conclusion 

An increase in the neutron scattering user community is necessary to make full use of neutron 
sources. Software that is easier to use and that can be run remotely will facilitate involving new 
users with neutron scattering. World Wide Web browsers and Java make it possible to design 
software that can run on multiple computing platforms and can run over the Internet. IPNS has 
begun a project to design software to allow remote data collection and analysis. A database is 
being used for storing and organizing information about experiments. Java code has been 
written to search and retrieve information about experiments and Java classes have been written 
‘for reading IPNS data. Methods are included to view, manipulate, and save data sets. Work on 
the project is ongoing. 

5, Acknowledgements 

The funding for this project came through a grant from the office of the Director of Physical 
Research at Argonne National Laboratory as result of a proposal submitted by C.-K. Loong, J.P. 
Hammonds, R. Osborn, T. Morgan, and T. Diesz. Joe Nipko, Dennis Mikkelson, and Dhar Desai 
have written software most of the software described here. 

6. References 

P. Klosowski, M. Koennecke, J.Z. Tischler, R. Osborn, Nexus: A common format for the 
exchange of neutron and synchrotron data, Physica B: Physics Of Condensed Matter (241-243) l- 
4 (1998) pp. 151-153 

D. Mikkelson, T. Worlton, TOF-VIS, software for interactive exploration of time-of-flight data, 
Physica B: Physics Of Condensed Matter (24 l-243) l-4 (1998) pp. 142- 144 

200 


